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Abstract. We present the exact solution of an infinite-range ballistic aggregation model. 
The density is found to decrease as N - ’ ’ 2  as N - +  CO, where N is the number of coiumns 
in which particles move. Exact expresssions for the correlation function and the hole-size 
distribution are derived. Both decay exponentially over their entire domain. Using a 
scaling ansatz similar to that made in finite-size scaling in critical phenomena, we extrapolate 
these results to large but finite ranges. Computer simulations test the proposed scaling. 

1. Introduction 

Many models have been proposed recently to describe irreversible growth processes. 
Typically, growth is initialised with some number of seed particles; each model specifies 
how subsequent particles aggregate. In the Witten and Sanders (1981, 1983) model 
of diffusion-limited aggregation ( DLA), a particle introduced from far off executes a 
random walk until it reaches a site adjacent to the aggregate and sticks, becoming part 
of the aggregate. A more general model, directed DLA, accounts for the possibility of 
an external field by allowing the random walk to occur with a different weight in each 
direction (Meakin 1983a, Jullien et a1 1984, Nadal et a1 1984). DLA is the limit that 
all weights are the same. The opposite extreme is the case in which particles move 
along straight lines in one direction. This model, known as ballistic aggregation or 
the ‘rain’ model (Bensimon etall983, 1984, Meakin 1983b), describes particles diffusing 
in a preferred direction with a very long mean-free path, for example, crystals grown 
in vacuo at low temperatures. 

One common aspect of these models, and others like them, is that they are very 
simply stated but very difficult to solve. Most of what is known about these models 
has been learned through simulation, although there have been various mean-field 
(Muthukumar 1983, Tokuyama and Kawasaki 1984, Hentschel 1984, Ball et a1 1984) 
and renormalisation-group (Gould et a1 1983, Sahimi and Jerauld 1983) treatments 
proposed. In this paper we present a generalised ‘rain’ model which we call extended- 
range ballistic aggregation (ERBA). In this model particles ‘stick’ when they come 
within a specified lateral range of the aggregate. In § 2 we outline the exact solution 
of ERBA with infinite range. We calculate the density, correlation function, and hole-size 
distribution. In § 3 we make a scaling ansatz similar to that used in finite-size scaling 
(Fisher 1971, Fisher and Barber 1972, Barber 1982) to extrapolate these results to finite 
range. We present the results of simulations which test this ansatz. 
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2. Exact results 

2.1. The model 

In the ‘rain’ model of ballistic aggregation (Bensimon et a1 1983, 1984, Meakin 1983b), 
balls are dropped from random positions high above the substrate and  fall straight 
downward. A given ball stops when it sticks to another ball aready in the aggregate. 
On a square lattice, a ball dropped in a given column will fall until it sees a particle 
either in a nearest-neighbour lattice site to the side of it, or in the lattice site directly 
below it. Then it sticks and becomes part of the aggregate. 

We define the ERBA model as follows: let r be the range. Then in ERBA a falling 
particle sticks as soon as it sees an  occupied site within r lattice spacings on the same 
level, or one in the lattice site immediately below it. The ‘rain’ model is the case r = 1. 

In this paper we discuss N-column ERBA. We define the one- (two-) dimensional 
problem to be N semi-infinite columns arranged on a line (square). The problem in 
higher dimensions is defined analogously. The one-dimensional case for r = 2 is 
illustrated in figure 1. We note that in d -dimensional ERBA, a ( d  + 1)-dimensional 
structure is grown. We assume periodic boundary conditions, and take for initial 
condition a seed particle at  the bottom of each column. Subsequently, the height of 
a given column is defined as the distance above the seed particle (in units of the lattice 
spacing) of the most recently occupied site in the column. 

I I 

Figure 1. Possible growth sequence for E R B A  with r = 2, d = I .  Numbers indicate the order 
in which balls were introduced into the lattice. Broken lines indicate possible trajectories 
for subsequent balls. 

We call the case in which every column interacts with every other column the 
infinite-range model ( IRM).  In one dimension this occurs for r 3  N / 2 .  Properties of 
the I R M  are independent of dimension, because the spatial relationship of the columns 
to each other is irrelevant. We focus on this model first, since it is exactly solvable. 
The solution provides information, via scaling hypotheses, about the finite-range model. 

The I R M  grows row by row. This is because once the structure has grown to a 
certain height (defined as the height of the tallest column or columns), no balls dropped 
subsequently can stick below that height. The first site occupied in a given row must 
be directly above an occupied site in the previous row. The total number of balls in 
a completed row, however, is independent of that in any other row, and hence this 
structure has no boundary layer. This is in contrast to ERBA with finite range, including 
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the 'rain' model, in which there is a period of transience during which the density 
relaxes to its bulk value. 

2.2. Solution for the number of tallest columns 

In this model, we drop one ball each time step. We define P , ( n )  to be the probability 
that at time t there are n tallest columns, i.e., there are n columns with height 
h = max,,l,...,N ( h j ) .  Then the following recursion relations are an immediate con- 
sequence of the definition of the IRM: 

This system of equations describes a primitive, homogeneous Markov chain with 
a finite number of states (Gantmacher 1959). That is, the coefficients are independent 
of time, and for all i , j  there exists a finite probability after N time steps of having j 
tallest columns given an initial state with i tallest columns. For such a system the 
asymptotic probabilities P( n )  = limf+a P, ( n )  are guaranteed to exist, and the approach 
to the limit is geometric. Specifically, for t + CO we can remove the subscripts from 
(1) .  Together with the normalisation condition 

N 

P ( n ) = l  
n = l  

these equations are easily solved. We find 

P( N )  ( 1  s n s  N -  1) ( 3 a )  
"-" 

P ( n )  = 
( N - n ) !  

where P( N )  is the probability of finding all columns at the same height. This description 
of the system in terms of the P ( n )  will be useful in evaluating other quantities. 

2.3. Density 

Another quantity of interest is the probability of finding m balls in a given row once 
the row is complete, i.e., the next row has been started. This probability, which we 
call Q ( m ) ,  can be derived as follows: every completed row has at least one ball in it. 
After the first ball is in place in the row, the next ball dropped will fall on top of the 
first one with probability 1/N, in which case the row is completed and a new row 
begun. Therefore Q( 1 )  = 1/N. Otherwise, with probability ( 1  - 1/N) there will be two 
balls in the row. The next ball dropped will fall on top of one of the first two with 
probability 2/ N, and thus Q(2) = ( 1  - 1 /  N ) 2 /  N. Continuing this process, we find the 
general expression 

(4) Q(m) = ( 1  - 1/N)( 1 - 2 / N )  . . . [ l -  ( m  - l ) /N]m/N,  
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which holds independently for every row of the structure. The average row density, 
or equivalently, the density of a structure that has been grown a long time, is 

There are two alternative ways to compute p which will prove useful. First, say a 
large number, M, of balls are dropped. Since every time the height of the structure 
increases by one there is then one tallest column, the height of the structure will be 
equal to the number of times there was one tallest column. This number is MP(1).  
Therefore, the structure occupies a volume NMP( I ) ,  and the density is 

; = [ N P ( l ) ] - l .  ( 6 )  

A third expression for p is obtained by noting that ( 3 a )  and (4) may be used to relate 
the distributions Q and P:  

( 7 )  Q( m )  = mP( m ) /  NP( I ) .  

Then using equations ( 2 ) ,  (6), and (7) we find 

2.4. Asymptotic behaviour of the density 

We now derive the asymptotic behaviour p - O( N - 1 ' 2 )  as N + CO. First we show that 
P( N )  - O(e-N)  as N + CO. P( N ) - '  is simply the first N terms in a Taylor expansion 
of e N  (see equation (36 ) ) .  The second N terms of this expansion, taken in reverse 
order, are equal to the first N except for corrections which are unimportant as N + CO. 

We have 

The last term in (9) is bounded as follows: 

+. . .) N" N N 2  
m - 2 ~  m !  (;;!( ' + G G + ( 2 N + 2 ) ( 2 N + l )  
c -=- 

where we have approximated ( 2 N ) !  using Stirling's formula. Therefore, this term does 
not contribute to the leading asymptotic behaviour of P( N )  as N + CO. 

We now consider the seco,nd term in (9). It can be shown that the largest of the 
N summands in this term occurs for m - (3 N)"' as N + CO. With the aid of the identity 
limn-x- ( 1  + x / n ) "  = e "  and  Stirling's formula, we find that this largest summand is 
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asymptotically O(eNN-3/2).  Thus the second term in (9) is at most O(eNN-’12), and 
so P( N) - 2eTN. Using ( 3 a )  we have P( 1 )  - ( ~ / T ) ” ~ N - ’ / ~ .  The density, using (6), 
is then 

p - ( T / ~ ) ” ~ N - ” *  ( N + W ) .  (10) 

The velocity of growth, defined as the average change in the height of the structure 
every N time steps, is simply the inverse of the density, and so diverges as N’12 as N + E. 

2.5. Correlation function 

As discussed in § 2.1, structures in the I R M  grow row by row. A new row is begun by 
the first particle that falls on a site occupied in the row just below it. At subsequent 
time steps particles fill in the new row at random. Thus, only the placement of the 
first particle in each row contains information about the previous row, because the 
first particle is positioned directly above a particle in that row. This is the sole source 
of correlations in the I R M .  

The density-density correlation function is defined as 

c , ( h ) ~ ( n , ( o ) n , ( h ) ) - p ’  

where n k ( h )  is the occupation (0 or 1 )  of the kth site in row h, and (. . .) represents 
an average over all possible structures grown according to the rules. Since these 
structures have no boundary layer, 0 refers to any reference row provided row h is 
complete. 

First we consider c , , (h) ,  the correlation function for sites in the same column. 
c,.,(h) will follow trivially. Let l ( 1 ’ )  be the first site occupied in row 1 (row h )  and let 
Z( h - 1 )  be the probability that 1 = 1’. A recursion relation for Z( h )  may be constructed 
by considering the case that the completed row h - 1 is occupied by m particles. If 
the first site occupied in row h - 1 is site 1, then l ‘ =  1 with probability l / m .  Otherwise, 
site 1 in row h - 1 is filled in subsequently with probability ( m  - I ) / (  N - l ) ,  and then 
with probability l /m,  row h will begin at this site. Therefore, 

(11)  
N N Q ( m )  m - 1  z ( h ) = z ( h - i )  O(m)+[l-Z(h-l)]  -- 

m = I  m , , ,=I m N-1’ 

Using the boundary condition Z(0) = 1 and equation (8) to evaluate the sums in ( 1  1 )  
we find 

Z(h-1)= (N; - l)(pN--;)‘‘-l+-. -- 
1 
N 

If 1 = l’, then both row 0 and row h have site 1 occupied. If k and k’ are the number 
of balls in row 0 and row h respectively upon completion of these rows, then the 
expected total number of sites, Ns(k ,  k‘), occupied both in row 0 and row h is 
1 + (k  - l ) (k‘  - 1 ) / (  N - 1). Defining AI, to be the correlation function for given 1, I’ we 
have 

To derive f i z r ’ ,  we consider a related model in which the distribution of numbers 
k in completed rows is again Q( k ) ,  but now the k particles in a given row are randomly 
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placed. Note that in this model the first particle in a row need not be placed above a 
particle in the previous row. In this random model ( n t ( 0 ) n i ( h ) ) r a n  = ( n , ( 0 ) ) ( n z ( h ) )  = p2 .  
This random occupation can occur in two ways: the first ball placed in row h occupies 
a given site that is also occupied in row 0, or it does not. In the first case, ( n , ( O ) n , (  h))ran = 
h r + p 2 .  In the second case, (n,(0)n,(h)) ,an=f, ,Ip+p2.  Since for fixed 1 there are N -  1 
ways to choose 1' # 1, then 

Thus we can solve for f,#!,: 

f , + r , =  - [ l / ( N -  1 ) I h  (14) 

The functions fi,: are identical for the two models: in each model, after the first ball 
is in place in a given row, subsequent balls are placed at random. Therefore, (14) also 
holds in the I R M .  

Finally, using equations (12)-( 14), we find that the correlation functions for sites 
within a single column is an exact exponential: 

c , , ( h ) = 2 ( h - 1 I A , + [ 1 - Z ( h - l ) l f ; . , ,  ( h s l )  

In the limit of large N, the correlation length vanishes: ( - 2/ln N. Correlations decay 
rapidly, as expected. 

Using reasoning similar to that which led to (14), we find 

c,,( h )  + ( N - 1 ) c, 2,( h )  = 0. 

Therefore, using ( 1 9 ,  the correlation function for sites in different columns is 

This anticorrelation makes sense: a particle occupying column i in row 0 makes it 
more likely that there will be a particle in column i at row h, because row 1 (and  then 
row 2, etc) may begin in that column. However, the average density p is the same for 
every row. So if it is more likely to find a particle in column i at row h, it is less likely 
to find a particle in column j # i at row h. 

2.6. Hole-size distribution 

We now derive the hole-size distribution a( m) of a structure with an  infinite number 
of completed rows. Since the placement of particles with respect to each other in a 
given row is random, we consider holes that exist within single columns only. Thus, 
we define the probability Cl( m) of finding a hole of size m as follows. Given a particular 
occupied site (defined to lie in row 0), a(m) is the probability that the first m sites 
above this site are vacant, while the ( m  + 1)th site is occupied. The probability of a 
hole size 1 or greater is then 
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where k, is the number of occupied sites in row r upon completion of the row, and 
(. . .) signifies an average over the Q ( k , ) .  

The first factor in equation (16), k,,/pN, is the fraction of occupied sites that are 
in a row with ko occupied sites total. The next factor, ( ko - 1 ) /  ko, is the probability 
that a given occupied site in row 0, which we denote as site i ,  is not the first site 
occupied in row 1. The next rn factors give the probability that no balls fall into 
column i while rows 1 through m are built up. The final factor, (k , , ,  - l ) / (N-  l ) ,  is 
the probability that a ball fills in column i at row m + 1. For rn = 0 there is an additional 
contribution from the case that site i is the first site occupied in row 1. This happens 
with probability l /pN. 

The k, are independent quantities. Using (5)  to evaluate the averages in (16) we find 

( p N - l y  N - p  “ 1  
p N ( N  - 1 )  (-9 N -  1 +% 8m.O. 

The average hole size computed with this distribution is p-l  - 1 (as it must be), and 
so increases as N’” as N+m.  The hole-size distribution decays exponentially with 
a characteristic length also of order NI”, much larger than the correlation length 5 
(equation (15)). This is not contradictory. For example, a totally random placement 
of balls on the lattice has a characteristic hole size while the correlation length is zero. 

In fact, the probability of a hole of size rn for this totally random distribution of 
balls with density p is. 

Oran(m) = P(1 - P I ” .  

Comparing this distribution to that of equation (17) we find 

f i , ( m ) / O , , , ( m )  = I + ( l / p ’ ~ )  S,,~+O(N-”’). 

Aside from holes of size 0 (through which, as noted previously, the only information 
about the structure is passed) the distribution of hole sizes in the I R M  is nearly random. 

3. Scaling to finite range 

ERBA with finite range has not been solved. However, by postulating a scaling ansatz 
similar to that made in finite-size scaling (FSS) in critical phenomena, we extrapolate 
non-trivial information about the finite-range problem from the exact solution of the 
IRM. Similar methods have been applied to other problems in aggregation (RBcz and 
Vicsek 1983, Turban and Debierre 1984). 

3.1. Finite-size scaling in critical phenomena 

The primary postulate of FSS (Fisher 1971, Fisher and Barber 1972, Barber 1982) is 
that near the bulk critical temperature T,, the behaviour of a large but finite system is 
determined by the variable L / 5 (  T ) ,  where L is the characteristic linear dimension of 
the system and 5( T )  is the bulk correlation length. In particular, if 2 is a thermodynamic 
quantity exhibiting an algebraic divergence in the bulk as T, is approached, then it is 
proposed that in the finite system 2 has the form 

22 - L % L / S ( T ) )  ( L ,  5 large). (18) 



618 P Gelband and P N Strenski 

If Q diverges with an exponent a and 6 with an exponent v, then it is shown that this 
hypothesis is consistent with 

(19) 9 - L“‘” ( L  large, 5 = CO, T = T,). 

The predictions of FSS have been confirmed in many examples in critical phenomena 
(Sur er al 1976, Barber 1982, Brezin 1982). 

3.2. Finite-range scaling 

In  the same vein, we postulate that for E R B A  with range r, the density has the form 

P - r P g ( r / L )  ( r ,  L large) (20) 

where L= and d is the dimension. Note that L here plays the role of 6 in 
equation (18). When r = L we have the I R M  result p a  N-’12 (see equation (10)). 
Therefore, 

p = - d / 2 .  (21) 

To arrive at a scaling form analogous to (19) we need to consider g(O) ,  which is 
obtained by evaluating 

lim lim pr-+,  
r / L - O  r,L-.Cc 

r/ L fixed 

If it is valid to change the order in which limits are taken, i.e., if g ( 0 )  may be correctly 
evaluated by letting r /  L +  0 before letting r + CO, then we expect g ( 0 )  to be finite. This 
is because, on the bais of our computer simulations, we expect that the density does 
not vanish for fixed r letting L + c o .  If g ( 0 )  is finite then 

(22) 

In FSS it is the same sort of switching of limits by which (19) is derived from (18). If 
it is not valid to switch the limits, then g ( 0 )  may be 0. In this case we could expect 

( r  large, L = CO). 
- d / 2  P - r  

( r /  L)“  ( 1  << r<< L )  (23) prdl2 .- 

where U is some positive power. 
A similar argument for the correlation function, based on (1 5 ) ,  would suggest 

c i i ( h ) -  r - d ’ 2 g l ( r / L ,  I I  In L )  ( r large, L ~ I ’  >> h )  

where h has been scaled by the correlation length of the I R M .  For the hole-size 
distribution, using equation (17), we expect 

n , ( m )  - r - d ’ 2 g , ( r / L ,  MILd”)  ( r  large, L~ >> m )  

where m has been scaled by the characteristic hole size in the I R M .  

3.3. Results of computer simulations 

We have tested the scaling hypothesis for the density (equations (20) and (21)) with 
d = 1 by running Monte Carlo simulations in which ERBA structures were grown to 
maximum heights ranging between 6000 and 50 000. We note that the scaling hypothesis 
is confirmed if, for fixed values of r / L ,  the function pr”2 goes to a finite constant 
(=  g (  r /  L ) )  as r -+ CO. In figure 2 we plot our data for r /  L = $. It appears in this figure 
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Figure 2. Test of leading power-law behaviour for 
scaling of the density ( j t  = - f )  as explained in the 
text. 

Figure 3. Results of computer simulations for r /  L = 4 
and $: exact results for r /  L = i. Least-squares fits to 
tails (see text) are shown. 

that vanishes and diverges in the limit of large r. If this is correct, then for 
some intermediate exponent there is scaling (at least for r = L = a). The exponent 4 is 
a likely candidate, in agreement with (20) and (21). 

In figure 3 we plot our numerical values of pr112 for several values of r / L  (for 
r /  L = f the results are exact). We also show the results of a least-squares fit of the last 
eight data points on each curve to the form g (  r /  L )  + a l (  r /  L)r-'12+ a2( r /  L ) r - ' .  These 
fits predict g(a) = 0.627 and  g ( $ )  = 0.456, both well above zero. For comparison, the 
fit for r /  L = 4 predicts the exact value g ( f )  = 7 ~ " ~ / 2  to five places. We have chosen 
the above functional form for two reasons. First, analysis strongly suggests that pr112 
for r /  L = is a power series in r - ' / * .  Second, FSS predicts that corrections to scaling 
are power law (Barber 1982). 

We have also done simulations for smaller values of r / L .  The data indicate that 
the scaling function g is an increasing function. However, because of slow convergence 
it has not been feasible to obtain g accurately, especially for small r /  L. (For example, 
some of our data points required over 20 hours of CPU time on a VAX 11/780.) In 
particular, we have not been able to extrapolate to the limit r /  L + 0 to determine 
whether g(0) is finite. Thus we were unable to identify the correct form of the density 
(either (22) or  (23)) in the infinite-system limit. 

We have not tested scaling for d > 1,  o r  done rigorous testing of the correlation 
function or  hole-size distribution. However, we have seen that O(0) scales are expected 
for d = 1. Thus, the scaling hypotheses of § 3.2 are completely consistent with the 
results of our  simulations. 

4. Discussion 

For r large the underlying lattice structure should be unimportant. As a result, in this 
limit, the scaling functions of 0 3.2 depend only on ratios of the relevant length scales. 
This reduction in the number of variables together with the power-law scaling behaviour 
observed in ERBA seems indicative of an  underlying renormalisation group with fixed 
point at r = L = m .  The possibility g(0) = O  would correspond to the presence of a 
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so-called ‘dangerous irrelevant variable’. At this time, however, we do not understand 
the mechanics of this renormalisation group. 

We also note that the IRM is mean-field like. This is because every column ‘sees’ 
every other column, and because all quantities computed are averages over many time 
steps. However, the IRM is not a mean-field theory of the ‘rain’ model. Because we 
do not decrease the strength of the interaction with increasing range, the density as 
N + 03 of the I R M  vanishes, while that of the ‘rain’ model does not. 
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